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SYNOPSIS 

A mechanical model consisting of three elements (elastic, viscoelastic, and plastic) is pro- 
posed to describe the deformational behavior of a polymeric membrane operating in a 
pressure-driven process. The changes in the membrane thickness are proposed to be cal- 
culated from the experimentally obtained flux data. The advantages of a mechanical model 
over the conventional method of hysteresis area measurement as the mechanical stability 
of the polymeric membranes are discussed. 0 1992 John Wiley & Sons, Inc. 

INTRODUCTION 

The fluid flux J through a porous membrane in a 
pressure-driven process may be described by the 
Kozeny-Carman relationship ( 1 ) : 

where k is the Kozeny-Carman constant, m2; p, the 
fluid viscosity, Pa s; @, the membrane porosity; 1 ,  
the membrane thickness, m; and AP, the trans- 
membrane pressure, Pa. 

Equation ( 1 )  shows that the fluid flux increases 
linearly with the increase in the transmembrane 
pressure. But, practically, the relationship flux vs. 
pressure almost always shows a negative deviation 
from linearity (Fig. 1 ) -an effect attributed to the 
deformation undergone by the membrane subjected 
to pressure. As a result of the deformation, the 
membrane thickness decreases, but, simultaneously, 
the membrane becomes compact, i.e., the porosity 
decreases. If the membrane had not undergone any 
deformation, the relationship flux vs. pressure would 
have followed the curve OA (Fig. 1 ) . 

In a pressure-driven process, the polymeric 
membrane undergoes elastic, viscoelastic, as well as 
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plastic deformations. Therefore, a mechanical model 
consisting of three elements might describe the de- 
formational behavior of a polymeric membrane op- 
erating in a pressure-driven process (Fig. 2). Ku- 
rokawa et a1.’ observed the deformational behavior 
of a cellulose acetate membrane subjected to me- 
chanical stress. The authors proposed a mechanical 
model consisting of two elements (elastic and vis- 
coelastic ) to describe the observed deformational 
behavior. Based on the model, they made an attempt 
to explain the flux-decline through the membrane 
under operating conditions. In our previous pa- 
p e r ~ , ~ , ~  we discussed that the deformational behavior 
of a membrane subjected to mechanical stress is not 
the same as that of an operating one. Under oper- 
ational conditions, there is a flux through the mem- 
brane and the permeating fluid exerts pressure on 
the pore walls counteracting the membrane com- 
paction. Thus, the deformation of a membrane in a 
pressure-driven process is a resultant effect of the 
compressive pressure applied on the surface and that 
exerted on the pore walls by the permeating fluid. 
The membrane property may also be changed by 
the possible plasticizing effect of the permeating 
fluid. On the other hand, it is almost impossible to 
arrange direct observation on the membrane defor- 
mation under operational conditions. In the present 
paper, a mechanical model has been proposed to de- 
scribe the deformational behavior of a polymeric 
membrane operating in a pressure-driven process. 
The changes in the membrane thickness are pro- 
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t Figure 1 Flux J vs. pressure AP curve. 
Figure 3 Flux J vs. operational time t at a constant 
pressure: ( 1) a membrane with elastic and viscoelastic 
deformations only; ( 2 )  a membrane with elastic, visco- 
elastic, as well as plastic deformations. 

posed to be calculated from the experimentally ob- 
tained flux data. 

THEORY 

If the flux through the membrane is known, the 
change in the membrane thickness may be calculated 
with some approximation. Usually, the flux vs. op- 
erational period at a constant pressure is as shown 
in Figure 3.5 If the membrane undergoes only elastic 
and viscoelastic deformations, the flux gradually de- 
creases up to a certain value and then remains con- 
stant with the operational time (curve 1, Fig. 3 ) .  
However, if the membrane undergoes the three types 
of deformations, the flux monotonously decreases 
with time (curve 2, Fig. 3 ) .  The discrete lines 1' and 
2' show the expected constant fluxes, provided the 
membranes do not undergo any type of deformation. 
The constant values of curves 1 and 2 may be ob- 

Figure 2 
ments: Ei , moduli of elasticity; vi, viscosity. 

A mechanical model consisting of three ele- 

tained from the curve OA (Fig. 1) at the correspond- 
ing transmembrane pressure AP. The curves 1' and 
2' show higher flux than those of curves 1 and 2, 
respectively, even at  t = 0, owing to the fact that at 
the moment of pressurization the membranes un- 
dergo at least some elastic deformation, which also 
brings about some compaction. 

Assuming that the membrane material is prac- 
tically uncompressible and the compaction is per- 
formed only at the expense of the pore volume, we 
have relation (2 ) .  Such an assumption is valid for 
soft porous substances6: 

where S is the membrane area, m2; Po and P are, 
respectively, the initial porosity and that at time t ;  
lo and 1 are, respectively, the initial membrane 
thickness, m, and that a t  time t .  Combining eqs. 
(1) and ( 2 ) ,  we have 

l 2  + 3d21 - d 3  = 0 (3 )  

with d = (1 - Do)&.  
For the membranes with high porosity, the fourth 

term in eq. ( 3 )  may be neglected, and after a rear- 
rangement, it is converted into a quadratic equation 
[ eq. ( 4 )  1.  We may accept that solution of eq. (4) 
for which p has physical significance (0  < @ < Po) :  

(4) 
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Po and 4 are determined by a known method and 
the value of p is collected from the reference books. 
The value of the Kozeny-Carman constant may be 
determined from the flux vs. pressure relationship 
(Fig. 1 ) . As the curve OA is expected for the unde- 
formable membrane, the corresponding slope a is 
given by eq. ( 5 ) : 

or 

(1 - P d 2 l 0  
@: k = u p -  

Now, knowing the value of J at any time t (from 
Fig. 3) ,  the corresponding membrane thickness may 
be calculated from eq. (4 ) . The calculated value of 
Zb at t = 0 will be different from the initial membrane 
thickness 4 as the initial flux is measured after the 
membrane has already undergone at least some 
elastic deformation. 

The membrane deformation t is defined as fol- 
lows: 

E = 1/10 - 1 (6 )  

The relationship of deformation vs. operational pe- 
riod t (corresponding to Fig. 3 ) would be as shown 
in Figure 4. These values of deformations may be 
used to determine the parameter of the mechanical 
model in Figure 2. 

DETERMINATION OF THE PARAMETERS 
E , ,  E 2 ,  q2, A N D  q3 [FROM FIG. 4 (b ) ]  

The total deformation c of the proposed model is 
the sum of the elastic deformation, c l ,  viscoelastic 
deformation, t2, and plastic deformation, 63 : 

c = - A P ( l / E ,  + 1[1 - exp(-Ezt/~2)]/E2 

+ t /93 )  ( 7 )  

with 

where AP is the applied pressure, and t ,  the oper- 
ational period. 

- € f  
a )  

- €  I 

1, 1, '3 1, t 

Figure 4 Total deformation t as a function of the op- 
erational time t at a constant pressure: ( a )  a membrane 
with elastic and viscoelastic deformations only; (b)  a 
membrane with elastic, viscoelastic, as well as plastic de- 
formations. 

or 

For eqs. (7a)-( 7c), we have 

where t2,& is the viscoelastic deformation for the time 
t -  00. 

Let b = - A P / v 3  = slope of the linear portion of 
the curve E = f ( t ) ;  then, 

Now, for 0 < t < t2,m (where t2,, indicates the min- 
imum time necessary for the complete development 
of viscoelastic deformation ) : 
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or 

From eqs. ( 7b) and (8b),  we have 

or 

The value of the ratio - E2/q2 may be obtained from 
the slope of the curve In ( c2,03 - t2) vs. t ,  from where 
v2 may be calculated. 

Thus, all the parameters of the proposed model 
may be calculated. If no plastic deformation is ob- 
served, the third term in eq. (7)  vanishes and the 
remaining parameters are calculated by the same 
procedure from the data in Figure 4 ( a ) .  

Some authors' propose the hysteresis area 
bounded by the curves flux vs. pressure as a measure 
for the mechanical stability of the polymeric mem- 
brane. The pressure is increased and decreased 
stepwise ( P I ,  P2, . . . , P,-l, P,, . . . , P2, P1 ) and the 
corresponding flux is measured after a predeter- 
mined period of time. It may be easily shown from 
eq. (7)  that depending on the chosen operational 
time the deformations will be different, resulting in 
different fluxes at the same pressure. If the mem- 
brane undergoes only elastic and viscoelastic defor- 
mations and the experimenter chooses a period of 
t3 > t2,, [see Fig. 4 ( a )  ] for each flux measurement, 
then no hysteresis area will be observed [curve I, 
Fig. 5(a) ] ,  because the time t3 is sufficiently high 
for the complete development as well as for the re- 
covery of the viscoelastic deformation during, re- 
spectively, the direct and reverse courses. However, 
if the experimenter chooses a period of tl < t2,, [see 
Fig. 4 ( a ) ]  for each flux measurement, then a hys- 
teresis area will be observed [curve 2, Fig. 5 ( a )  1 ,  
because the time tl is not sufficient for the complete 
development as well as the recovery of the visco- 
elastic deformation during, respectively, the direct 
and reverse courses. 

Most fatal is the case when the membrane un- 
dergoes the three types of deformations. If the times 
for each experiment are chosen to be tl,  t3, and t4 
as shown in Figure 4 ( b )  , then the corresponding 
flux vs. the pressure relationship will be described 
by curves 1,2, and 3 [Fig. 5 ( b )  ] with the increasing 
order of bounded areas. This is because for the time 
tl < t2,a, the membrane is not in a position to develop 

'I b) I 

AP, AP, *prl 

Figure 5 Flux J vs. pressure AP in direct and reverse 
courses: ( a )  a membrane with elastic and viscoelastic de- 
formations only; (b) a membrane with elastic, viscoelastic, 
as well as plastic deformations. The meanings of 1,2, and 
3 are explained in the text. 

equilibrium viscoelastic deformation in the direct 
course, and at  the same time, the operational period 
is low enough to develop significant plastic defor- 
mation. For that reason, the hysteresis area bounded 
by the curves of flux vs. pressure is small. On the 
other hand, as the plastic deformation increases lin- 
early with time, the higher the chosen operational 
time, the higher the hysteresis area. For that reason, 
the chosen operational periods tl < t3 < t4 correspond 
to the hysteresis areas in the same sequence. Thus, 
the same membrane, depending on the experi- 
menter, will show different mechanical stability. 

CONCLUSION 

On the basis of the above discussions, it may be 
concluded that the hysteresis area bounded by the 
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curves of flux vs. pressure in the direct and reverse 
courses depends to a great extent on the chosen op- 
erational period and cannot be accepted as a true 
measure for the mechanical stability of the poly- 
meric membranes operating in pressure-driven pro- 
cesses. It does not offer any insight into the mem- 
brane deformation process. It is mainly a measure 
for the plastic deformation only. On the other hand, 
the proposed mechanical model describes all types 
of deformations and its parameters are independent 
of the chosen operational period of investigation. 
The proposed method for the determination of the 
parameters of the model provides an opportunity to 
observe the changes in the membrane thicknesses. 
Therefore, it is much better to characterize the de- 
formational behavior of a polymeric membrane by 
a mechanical model. 
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